skip to main content


Search for: All records

Creators/Authors contains: "Lin, Yangju"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    The mechanical strength of individual polymer chains is believed to underlie a number of performance metrics in bulk materials, including adhesion and fracture toughness. Methods by which the intrinsic molecular strength of the constituents of a given polymeric material might be switched are therefore potentially useful both for applications in which triggered property changes are desirable, and as tests of molecular theories for bulk behaviors. Here we report that the sequential oxidation of sulfide containing polyesters ( PE-S ) to the corresponding sulfoxide ( PE-SO ) and then sulfone ( PE-SO2 ) first weakens (sulfoxide), and then enhances (sulfone), the effective mechanical integrity of the polymer backbone; PE-S ∼ PE-SO2 > PE-SO . The relative mechanical strength as a function of oxidation state is revealed through the use of gem -dichlorocyclopropane nonscissile mechanophores as an internal standard, and the observed order agrees well with the reported bond dissociation energies of C–S bonds in each species and with the results of CoGEF modeling. 
    more » « less
  2. Abstract

    The mechanical degradation of polymers is typically limited to a single chain scission per triggering chain stretching event, and the loss of stress transfer that results from the scission limits the extent of degradation that can be achieved. Here, we report that the mechanically triggered ring-opening of a [4.2.0]bicyclooctene (BCOE) mechanophore sets up a delayed, force-free cascade lactonization that results in chain scission. Delayed chain scission allows many eventual scission events to be initiated within a single polymer chain. Ultrasonication of a 120 kDa BCOE copolymer mechanically remodels the polymer backbone, and subsequent lactonization slowly (~days) degrades the molecular weight to 4.4 kDa, > 10× smaller than control polymers in which lactonization is blocked. The force-coupled kinetics of ring-opening are probed by single molecule force spectroscopy, and mechanical degradation in the bulk is demonstrated. Delayed scission offers a strategy to enhanced mechanical degradation and programmed obsolescence in structural polymeric materials.

     
    more » « less
  3. null (Ed.)
  4. The encapsulation of guests in supramolecular capsules has long been used to trap reactive intermediates and enhance or reduce the kinetic stability of reactants, and alter the products of chemical reactions that occur within the capsule interior. In recent years, multiple studies have shown that variations of normal reactivity patterns can be induced by trapping reactants under tension, for example along a backbone of an overextended polymer chain, in a manner that is fundamentally very different from, but reminiscent of, encapsulation. Here, we describe the formation of a mechanochemically generated isocyante via a mechanical retro [2 + 2] cycloaddition of a 1,2-diazetidinone (DAO) mechanophore. A single DAO mechanophore is incorporated into the chain center of a poly(methyl acrylate) (PMA) backbone via single electron transfer-living radical polymerization (SET-LRP). Mechanical activation of the DAO via ultrasonic sonication leads to the formation of isocyanate and imine products, as supported by trapping experiments using 9-(methylaminomethyl)anthracene labelling and 1 H NMR spectroscopy. Further, we examine the relative mechanical susceptibility of chain-centered DAO mechanophores through a variety of methods, and evaluate the advantage and disadvantage of each. 
    more » « less
  5. Abstract

    Through advances in molecular design, understanding of processing parameters, and development of non‐traditional device fabrication techniques, the field of wearable and implantable skin‐inspired devices is rapidly growing interest in the consumer market. Like previous technological advances, economic growth and efficiency is anticipated, as these devices will enable an augmented level of interaction between humans and the environment. However, the parallel growing electronic waste that is yet to be addressed has already left an adverse impact on the environment and human health. Looking forward, it is imperative to develop both human‐ and environmentally‐friendly electronics, which are contingent on emerging recyclable, biodegradable, and biocompatible polymer technologies. This review provides definitions for recyclable, biodegradable, and biocompatible polymers based on reported literature, an overview of the analytical techniques used to characterize mechanical and chemical property changes, and standard policies for real‐life applications. Then, various strategies in designing the next‐generation of polymers to be recyclable, biodegradable, or biocompatible with enhanced functionalities relative to traditional or commercial polymers are discussed. Finally, electronics that exhibit an element of recyclability, biodegradability, or biocompatibility with new molecular design are highlighted with the anticipation of integrating emerging polymer chemistries into future electronic devices.

     
    more » « less
  6. Abstract

    Understanding molecular design rules for stretchable polymer semiconductors is important for enabling next generation stretchable electronic circuits. To simultaneously improve both electrical properties and mechanical stretchability, a design strategy is reported in introducing conjugated rigid fused‐rings with bulky side groups in semiconducting polymers. In this work, the understanding of this design concept is improved by systematically investigating the effect of different types of bulky side groups asymmetrically substituted on conjugated polymer semiconductor backbones. Specifically, four types of side groups are investigated, including naphthalene (NaPh), biphenyl (PhPh), thienylphenyl (ThPh), and alkylphenyl (C4Ph), asymmetrically substituted on benzodithiophene units, namely asy‐BDT. With the four types of side groups installed on BDT‐containing conjugated polymers in an asymmetrical fashion, it is observed that they reduced the polymer chain aggregation and film crystallinity, hence improving the film stretchability. Furthermore, the fully conjugated polymer backbone allows maintenance of good charge carrier mobilities. Specifically, polymer PDPP‐C4Ph (with C4Ph side groups) shows the highest mobility in the fully stretchable transistor and maintained its mobility even after being subjected to hundreds of stretching‐releasing cycles at 25% strain. Overall, the results provide anunderstanding of the use of asymmetrically substituted fused‐ring conjugated polymer structures to tune mechanical and charge transport properties.

     
    more » « less